Oil Yield and
Uranium Content

of Black Shales

GEOLOGICAL SURVEY PROFESSIONAL PAPER 356-A

This report concerns work done on behalf
of the U.S. Atomic Energy Commission
and is published with the permission

of the Commission



Oil Yield and
Uranium Content

of Black Shales

By VERNON E. SWANSON

URANIUM IN CARBONACEOUS ROCKS

GEOLOGICAL SURVEY PROFESSIONAL PAPER 356-A

T#is report concerns work done on behalf
of the U.S. Aromic Eﬂergy Commeission
and is published with the permission

0f the Commission

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960



UNITED STATES DEPARTMENT OF THE INTERIOR
FRED A. SEATON, Secretary

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington 25, D.C. - Price 30 cents (paper cover)



General economie significanee._ _ __ . __________________
Uranium. oo e
Organic matter and oil yield. .- ________.__________.___
Sampling methods. - ...
Analytical methods- - ...

CONTENTS

Black shales of Pennsylvanian age in eastern Kansas and

northeastern Oklahoma. . _ . __.__ . _____________
Black shales of Pennsylvanian age in Illinois_ . .o _..___
Black shales in the Phosphoria formation__.____._______
Black shale in the Sharon Springs member, Pierre shale__
Oil shales in the Green River formation in Colorado,

Utah, and Wyoming_ . _ . e _

e -0~ RN VU

Chattanooga shale and correlatives in the eastern and Shales in foreign countries. -« oo oo oo aa__

central United States_ .. oo e ____

Chattan

Theoretical role of organic matter in oil yield and uranium
concentration._ .. - d e

N ~3

00ga shale in the southeastern States____.._

Antrim shale in Michigan_. ... ____. 14  SUMMATY - oo e eccccieaees

Chattan

ooga and Woodford shales in the midconti- Literature eited. .o oo oo oo o _

nent area . _ .. - oo e 15 Index. . oo e mcmm————a

Fiaure

DO O W

17.
18.
19.

20.
21.

TasLE 1.

ILLUSTRATIONS

. Map of United States showing localities of samples and of black ShaleS mme o oo oo cmmco o oo ccccmccc o emmmcoas
. Possible associations and time of emplacement of uranium with shale constituents_ .- .. ________
. Relation of oil yield to uranium content of the Chattanooga shale_ . ______________________________________
. Localities represented by sample data in figures 3, 5, 6, 7, and 8. __ o mo___
. Relation of oil yield to uranium content, upper unit of Gassaway member of Chattanooga shale____.__.__.____

Uranium content and oil yield, Gassaway member of Chattanooga shale_._ . _____________

. Uranium and carbon, Gassaway member of Chattanooga shale. .. o .__.._
. Relation of specific gravity of oil to uranium content, Chattanooga shale_ . - ___..___
. Relation of specific gravity of oil to percent of organic matter converted to oil, in oil shales from Brazil, Australia,

Manchuria, and South Afriea_ _ _ e —————————

. Diagrams giving data on oil shales from Brazil and South Africa._ oo e cccem e
. Relation of uranium content to oil yield, Antrim shale__.__ . ___ o _e__.
. Relation of uranium and carbon contents, Antrim shale and two other Paleozoic shales__ . _ .. ______.____
. Relation of uranium content to (A) oil yield and (B) specific gravity of oil, Woodford shale. ... ______________
. Diagrams indicating uranium content is related to phosphate content rather than oil yield in uppermost black

shale unit of Cherokee shale_ . . _ e e e nmm——————————

. Relation of uranium contents to oil yields of two black shales of Pennsylvanian age_ - ___ . _____________
. Relation of uranium content to (A) oil yield, (B) P3Oy, and (C) PyO; and oil in Retort phosphatic shale member

of Phosphoria formation. - .- . e mm e e ————m——————
Relation between oil yield and uranium content in black shale of Late Cambrian age in Sweden._____________
Relation between uranium and carbon content in kolm from Upper Cambrian shale in Sweden_ .. ___________
Possible relations of uranium content to oil yield of marine black shale as controlled by total organic matter and

proportions of humic and sapropelic material __ . . __ .o
Humic and sapropelic materials in a shallow sea and uranjum content and oil yield of resulting black shale____
Relation of uranium content to oil yield in theoretical black shale unit_ _ _ - L _.

TABLE

Sampled localities and uranium content, oil yield, and other analyses of black shales. .. ____ - caeoooooe

Page

16
17
18
19

19
21

22
26
28
43

10
10
10
11
12

13
13

15
15

17
18

19
21
22
26

28

31



URANIUM IN CARBONACEOUS ROCKS

OIL YIELD AND URANIUM CONTENT OF BLACK SHALES

By VernoN E. SwaNsoN

ABSTRACT

Some black shales contain as much as one hundred times
more uranium than other common sedimentary rocks and they
algo contain organic matter that will yield oil when subjected
to destructive distillation. Such shales may be referred to
as uraniferous oil shales and have been considered as a po-
tential sourece of both oil and uranium; oil yield and uranium
determinations on more than five hundred samples of these
shales are recorded in this report.

Slightly more than half of these samples are from the Late
Devonian Chattanooga shale and its partial correlatives in the
eastern and midcontinent areas of the United States. In cen-
tral Tennessee, the upper member of the Chattanooga shale
is about 15 feet thick, contains 0.006 percent uranium, and
will yield about 10 gallons of oil per ton of shale. Limited
data indicate that the Chattanooga shale in Alabama and
southern Kentucky, the Antrim shale of Michigan, the New
Albany shale of Indiana and northwestern Kentucky and its
stratigraphic equivalent in southern Illinois, and the Chat-
tanooga and Woodford shales of the midcontinent area have
slightly lesser quantities of both oil and uranium. A channel
sample of 5 feet of the Doublehorn shale member of the Houy
formation in central Texas indicates that this unit has a
uranium content of 0.009 percent and an oil yield of 21.8
gallons of oil per ton of shale.

Some of the marine black shales in the cyclothems of Penn-
sylvanian age in Illinois, Kansas, and Oklahoma contain be-
tween 0.004 and 0.010 percent uranium and yield 8 to 15
gallons of oil per ton of shale, but generally these shales are
less than 3 feet thick, Some shale units in the Phosphoria
formation of Permian age in southwestern Montana, which
are about 10 feet thick, will yield 10 to 15 gallons of oil per
ton of shale, but their uranium content of 0.001 to 0.004 per-
cent is relatively low.

The few data available indicate the Sharon Springs mem-
ber of the Pierre shale of Late Cretaceous age in the Great
Plains area has an oil yield of less than 8 gallons per ton of
shale and a uranium content of about 0.002 percent. The
Green River formation of Eocene age in Colorado and Utah
has beds of oil shale tens of feet thick that will yield more
than 25 gallons of oil per ton of shale, but the uranium con-
tent of these beds is low, generally between 0.0003 and 0.0010
percent.

Both oil and uranium have been recovered in large quan-
tities from the Upper Cambrian black shales of Sweden, which
yield about 14 gallons of oil per ton of shale and about 0.023
percent uranium. Some other oil shales from foreign sources
that yield 50 or more gallons per ton generally contain about
0.0005 percent or less uranium.

A fair positive relation between oil yield and uranium con-
tent exists for some of these shales, particularly for parts of
the Chattanooga shale locally and the Antrim shale, but in
other shales little or no relation is apparent. In some of the
Pennsylvanian shales and in those in the Phosphoria forma-
tion the uranium is more closely related to the phosphate
content.

Whereas the oil from these shales is inherent to and de-
rived directly from the organic matter, most of the uranium
is attached to or precipitated in the presence of organic matter
just before or during the time of deposition of the organie-rich
sediment. It is suggested that two types of organic matter
should be distinguished, the sapropelic type derived principally
from algae, pollen and spores, resins, and the fatty tissues
of animals, and the humic type which is derived principally
from cellulose and lignin or the woody parts of plants. The
sapropelic type of organic matter generally yields four or
five times more oil than the humic type, but, because of its
general resistance to decay, is probably insignificant in the
process of concentrating uranium. The humic type of organic
matter, either in its solid form or as soluble humic acid ex-
tracts, or, indirectly, as it creates a reducing and acidic
environment during its decay, is believed responsible for the
precipitation or sorption of the uranium in black shales. Only
where the proportion of sapropelic to humic type of organic
matter remains the same in an otherwise homogeneous black
shale will the oil yield and uranium content have a high
positive correlation,

INTRODUCTION

During the 1944-54 period of intensive search for
sources of uranium in the United States, a part of
the effort of the U.S. Geological Survey was devoted
to the finding and study of uraniferous marine black
shales. Several of the more than one hundred black
shale units checked contain more than average amounts
of uranium; these were subjected to detailed strati-
graphic and geochemical study. Laboratory analyses
of several kinds were made on more than five thousand
samples of these shales, and it is the purpose of this
paper to present some of the analytical data and some
of the possible geologic interpretations and economic
implications derived therefrom.

In the general geologic sense, many marine black
shales may be classed as oil shales. Because of their

1
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OIL YIELD AND URANIUM CONTENT OF BLACK SHALES

large amount of carbonaceous organic matter, fluid
and gaseous hydrocarbons can be produced from these
shales by destructive distillation (pyrolysis). The oil
obtainable from shales having a relatively high ura-
nium content logically is considered as a possibly
important byproduct if and when the uranium is
extracted. Figure 1 indicates those black shales in
the United States whose oil yield and uranium content
have been determined and shows the localities where
these shales were sampled.

The most distinctive feature common to rocks called
“black shales,” “oil shales,” and “carbonaceous shales”
is their relatively high content of organic matter. It
is not the purpose of this paper to classify and define
carbonaceous rocks; thus, only general meanings are
ascribed to these lithologic terms. As used here,
the three names are used interchangeably; all three
rock types are fine grained (with clay- and silt-size
particles), are thinly laminated, and generally contain
more than 2 percent organic carbon. A marine origin
for most of these shales is inferred on the basis of
the contained fossils and the lithologic uniformity
of the rock over tens or hundreds of thousands of
square miles. An arbitrary minimum amount of oil
distillable from a carbonaceous shale is not used here
in determining when the shale is or is not an oil
shale; the fact is implied that little or none of the
contained organic matter is soluble in ordinary petro-
leum solvents, but a large proportion is convertible
to artificial petroleum on heating. A shale is here
considered uraniferous only if it contains 0.002 percent
or more uranium through most of its vertical and
lateral extent.

In a compilation and summary paper such as this,
the work of many persons is represented. Most of
the collecting of samples, field study, and laboratory
analyses were accomplished by members of the Geo-
logical Survey. Hence, this paper should be recog-
nized as a result of a joint effort within the Geological
Survey, though the author assumes responsibility for
the interpretations made. This report was prepared
on behalf of the Division of Raw Materials of the
U.S. Atomic Energy Commission.

Several samples of Pennsylvanian black shales in
Tllinois were made available to the author by the
Illinois States Geological Survey, for analytical work.
For this cooperation, the author thanks particularly
J. C. Frye, M. E. Ostrom, and J. E. Lamar. S. P.
Ellison, Jr., and V. E. Barnes were helpful in obtain-
ing samples of the Woodford shale equivalent in
Texas. The use of unpublished data provided by
the U.S. Bureau of Mines and T. B. Dahlman of
the Geological Survey of Sweden is also gratefully
acknowledged.

GENERAL ECONOMIC SIGNIFICANCE

Tonnages of uraniferous black shales in the United
States may be calculated in the trillions, and, similarly,
the oil that can be recovered from them may be esti-
mated in trillions of barrels. Most of these shales,
however, contain recoverable oil in such small quan-
tities, less than 15 gallons per ton, that it is doubtful
they will be considered as a source of oil for many
decades.

The amount of uranium in these shales is extremely
large, reckoned in billions of tons of metallic uranium.
In view of the present large high-grade sources of
uranium and the probable future demand for the
metal, it is also unlikely that these shales will be mined
and processed for uranium in the near future.

As most of the shales discussed in this report gen-
erally contain less than 15 gallons of oil per ton and
less than 0.01 percent uranium, they are far from
being competitive with the existing sources of crude
oil or uranium. Possibly certain other constituents,
such as sulfur and nitrogen compounds, aluminum,
and titanium, could be extracted during the processing
of these shales and the combined production of several
of these, including the oil and uranium, may some
day be the critical basis for a profitable venture.

The Gassaway member of the Chattanooga shale
in a part of the central Eastern Highland Rim of
Tennessee can be cited as an example of a possible
low-grade and common source of oil and uranium.
This unit averages 15 feet in thickness and contains
an average of 0.0060 percent uranium; an average
of 10 gallons of oil per ton can be recovered from it.
Computed on a square mile basis, this unit comprises
an ‘“ore body” of about 30 million tons of shale.
The shale in this square mile contains about 1,800
tons of metallic uranium; or, for sake of comparison,
this “ore body” contains uranium nearly equal to
that in a million-ton ore deposit, of which less than
10 were known in the United States at the beginning
of 1957 (U.S. Atomic Energy Commission, 1957,
p- 7).

In the course of processing the shale for its uranium,
the shale probably would be retorted, and the extracted
oil would be a significant byproduct. Over 7 million
barrels of oil could be produced from the shale in
the square mile mentioned above, an amount of oil
equivalent to the total estimated production of a fair-
sized oilfield. Large amounts of sulfur and nitrogen
compounds, and possibly other materials also, might
be economically recovered to add to the total value
of the shale.

This example of the potential products in a specific
shale is not purported to be representative. Rather,
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it cites a shale in the United States that is known to
have a uniformly high uranium content over hundreds
of square miles and for which much detailed geologic
and chemical information is available. The cost of
mining and extraction is economically prohibitive to-
day, but in light of the history and exploitation of
large deposits of low-grade ores in the iron and copper
industries, the importance of shales as possible sources
of petroleum and uranium will increase in the decades
ahead.

URANIUM

The average uranium content of all shales is esti-
mated to be between 0.0003 and 0.0004 percent (3 to
4 parts per million), which is about the same as for
granites (Holland and Kulp, 1954, p. 203). Car-
bonaceous shales, here arbitrarily defined as those that
contain 2 percent or more organic carbon, have a
uranium content that generally ranges from 0.000X
to 0.0X percent. However, very few contain more than
0.005 percent; the author estimates that the average
for all carbonaceous shales is probably about 0.0008
percent.

The highest uranium content known in a marine
black shale in the United States is from a correlative
of the Chattanooga shale in northern Arkansas; a
small selected sample of a layer less than 1 inch
thick, made up largely of compacted opaque coaly at-
tritus, contained 0.7 percent uranium. In southern
Sweden, the black organic-rich kolm lenses which are
sparingly distributed through parts of the Cambrian
and Ordovician alum shales contain about 0.4 percent
uranium, but the “richest” shale unit, which in the
Billingen area is about 10 feet thick and contains the
kolm, has an average content of about 0.03 percent
uranium (T. B. Dahlman, oral communication, 1957).

In the United States, parts of a few black shale
units of Pennsylvanian age in the midcontinent area
locally contain between 0.010 and 0.017 percent
uranium, but these more uraniferous beds are generally
only 1 to 2 feet thick. In central Tennessee, the Gassa-
way member of the Chattanooga shale contains 0.0060
percent uranium over hundreds of square miles (Kehn,
1955) ; this unit is about 15 feet thick and is of Late
Devonian age.

The lateral distribution of the uranium in these
black shales is generally uniform, varying less than
a few thousandths of one percent over hundreds, and
in some areas thousands, of square miles. Generally,
the greater the ratio of organic to mineral material,
the greater is the uranium content of these widespread
marine shales; the less the amount of calcium ecar-
bonate, the greater is the uranium content; and the

slower the interpreted rate of deposition, the greater
is the uranium content (also see McKelvey and Nelson,
1950, p. 38-39). These generalizations can be applied
successfully in the study of some shales, but, as is
the case with most generalizations in geology, they
must always be tempered and adjusted by other geo-
logic factors when a particular unit in a particular
area is studied in detail.

The uranium in marine black shales may have
been localized and incorporated in several ways, 12
of which are shown on figure 2. Five types of material
are involved, namely, the resistates, clay, organic
material, phosphatic material, and hydrogen sulfide
as represented indirectly by iron sulfide minerals.
The emplacement of the uranium in and with these
shale components began before erosion of the original
source rock and probably ended some time after sedi-
ment deposition during an early stage of diagenesis.
Because most of the uranium accumulated with the
sediments, it is regarded as syngenetic.

Of the 5 types of material indicated as being gene-
tically associated with uranium in marine black shales,
2 types, the vegetal and the phosphatic materials,
probably account for more than 90 percent of the total
amount of uranium. The proportion of uranium asso-
ciated with these two types differs greatly from one
shale to the other; the Chattanooga shale of Tennessee
might be considered as one extreme, where the organic
matter holds or is associated with probably in excess
of 90 percent of the uranium, and the phosphate only
a few percent. At the other extreme are the phos-
phate-rich units of the Phosphoria formation of Idaho
where the reverse proportion holds.

Phosphate, in the form of scattered nodules, pellets,
oolites, thin layers, and discrete microscopic grains
of carbonate-fluorapatite, is a common and distinctive
component of most marine black shales. The uranium
in phosphate is tetravalent and is believed to have
been substituted isomorphously for calcium (Alt-
schuler, Clarke, and Young, 1954). Some of this
phosphatic material may contain as much as 0.1 percent
uranium, but the general range is 0.00X to 0.01X.

Some of the uranium in the organic matter, which
constitutes as much as 25 percent by weight of some
shales, may have been absorbed during plant growth,
but, as will be discussed later, most of it is believed to
have been directly precipitated or adsorbed in a stable
form as disseminated uranium dioxide or as a metal-
organic compound on products of plant decomposition
or digintegration.

The chemical conditions that control the preferen-
tial attachment of uranium to the phosphate or the
organic material in a common depositional environ-
ment have not been clearly determined. It is the
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writer’s opinion that if the phosphate forms at or very
near the surface of deposition, the phosphate captures
the available uranium more readily than does the
organic matter; the organic matter either incorporates
most of its uranium in stable form prior to reaching
this sphere of competition with phosphate or captures
most of the uranium where phosphate precipitation
is minimal. That phosphate that is precipitated and
forms concretions a few inches to several feet below
the surface of deposition commonly contains less ura-
nium than the surrounding organic material; the inter-
stitial water from which this phosphate is precipitated
probably was earlier depleted in its soluble uranium.

The resistates and the clays are believed to be of
minor importance in accounting for the total uranium
in marine black shales. Zircon, sphene, and monazite,
the most important uraniferous resistates, make up
less than 1 percent of most shales, and, though they
may contain from a few hundredths to a few tenths
percent uranium, they probably contribute, at most,
only 1 or 2 parts per million (0.000X percent) to
the total uranium in most marine black shales. The
clays, which comprise more than 50 percent of some
shales, are believed to contribute a similarly minute
part of the total uranium content.

528312—60——2

Uranium represented by black squares.

The generation of hydrogen sulfide, represented in
many shales by pyrite, is a part of the process of
decay of organic matter which produces a reducing
acidic chemical environment conducive to uranium
precipitation. The hydrogen sulfide is released either
from sulfur-bearing organic matter or from sulfate
ions in sea water by anaerobic or sulfur-reducing bac-
teria. Pyrite itself, though abundant in most urani-
ferous shales, is not chemically associated with the
uranium but is simply precipitated simultaneously
with uranium oxide in the presence of decomposing
organic matter.

Most of the uranium in marine black shales was
derived from ancient sea water, and therefore the
amount of uranium available in sea water was an
obviously important factor in controlling the amount
of uranium deposited with these sediments. Both
organic matter and phosphate are uranium acceptors,
but if these substances accumulated in water depleted
in uranium, they will contain no uranium; or, if the
influx of uranium to these waters was erratic, a posi-
tive relation between the amounts of uranium and
one or both of these substances could not he expected.
The supply and availability of uranium generally



6 URANIUM IN CARBONACEOUS ROCES

can be considered as more or less constant, however,
because the volumes of sea water in which black shales
were deposited probably were very large, because
uranium was and is highly soluble in normal sea water
and thereby widely distributed, and because the net
contribution of soluble uranium from the many and
varied sources would not change appreciably during
the period of black shale deposition.

ORGANIC MATTER AND OIL YIELD

The amount of uranium in a black shale may be
directly related to the amount of organic matter
present. Because the organic matter yields oil on
pyrolysis, an indirect but positive relation may exist
between the uranium content and oil yield of a shale.
The recoverable uranium and oil are of potential
economic interest; hence, the general tenor of this
paper will be to relate these two constituents. This
approach, however, is not intended to result in the
establishment of widely applicable principles on the
common geologic and geochemical history and occur-
rence of the two constituents in shales. The history
of accumulation, the type and amount of organic
matter, the chemical makeup, and the amounts of
other constituents present involve numerous and com-
plex variations, only a few of which are completely
understood at this time.

The carbonaceous matter in black shales ranges
from material that may have remained almost un-
changed in form and composition since it was deposited,
to material that may have been radically changed in
composition and whose source and parent material
is unknown. Regardless of its origin and subsequent
history, most of this carbonaceous material will yield
oil on destructive distillation, and if this carbonaceous
matter is incorporated in shale, the rock can be loosely
termed an oil shale.

Without invading the complex subject of classifi-
cations of this organic material, several factors that
are pertinent to the understanding of the type and
oil yield of the organic matter in the shales are dis-
cussed below. With the exception of the oil shales
in the Green River formation of Focene age in Colo-
rado, Wyoming, and Utah, all the shales discussed
are of marine origin. Most of the organic matter
in all the shales is believed to be of plant origin, and
most of the organic matter in these shales is believed
to have been but little altered, with the exception
of physical comminution and compaction, since it was
deposited.

The catch-all term “kerogen” has been used to refer
to that organic matter in oil shales that will yield
volatile hydrocarbons when subjected to destructive

distillation. For the purpose of this discussion, how-
ever, the writer prefers to divide the organic matter
that includes kerogen into two major types, sapropelic
(predominantly algal remains) and humic (mainly
degraded vascular or woody plant tissues). Most oil
shales contain both types of organic material, but the
general proportions of each in a shale are believed to
be important controlling factors in determining the
oil yield. The subjectiveness of this point is clearly
recognized, in that the amount of structureless uniden-
tifiable organic matter in oil shales greatly exceeds
the amount that can be determined to be of either
algal or vascular-plant origin.

Dulhunty (1944, p. 32) stated that fossil algal mate-
rial (torbanite) has an oil yield on pyrolysis of 60
to 90 percent by weight; the coals, which are pre-
dominantly made up of vascular plant debris, yield
only 15 to 40 percent. Some samples of torbanite oil
shales of New South Wales have yielded as much
as 200 gallons of oil per ton of shale, whereas coals
rarely yield more than a few tens of gallons per ton
except when artificially hydrogenated. It may be de-
duced then that an oil shale having a large proportion
of algal matter will have a greater oil yield than one
having a large proportion of coaly or humic matter.
This and other significant characteristics of organic
matter bearing on the oil yield and uranium content
are discussed in more detail on p. 22-26.

SAMPLING METHODS

This report is based primarily on the analyses for
oil yield and uranium content of 526 samples, a total
of over 1000 chemical determinations (table 1, p.31-41).
Determinations for oil yield and equivalent uranium
were available for an additional 260 samples, and
analyses of some shales solely for uranium are noted
in the text, Thus, over 800 samples, collected and
analyzed individually, are represented in this report.

Most of the shale samples represented by analytical
data were collected at the outcrop and are channel
samples of 1 foot or more of shale. The samples
were taken in most cases to represent specific litho-
logically homogeneous units; where more than one
sample was collected within a stratigraphic unit, the
analytical data were weighted according to thickness
of sampled interval in calculating an average uranium
content and oil yield for that unit. In a few cases,
the samples were made up from either vertical splits
of well cores or chip samples from well cuttings; a
few special samples represent a unique lithologic type
and are considered “selected” samples. With the ex-
ception of core, chip, and selected samples, the average
weight of samples collected was about 5 pounds.



OIL YIELD AND URANIUM CONTENT OF BLACK SHALES 7

Because most of the samples were collected at out-
crops, changes in oil yield and uranium content of
the rock due to weathering should be considered.
Weathering breaks down the organic matter by oxida-
tion; thus, other factors being equal, the more weath-
ered the shale, the less the oil yield. For example, a
sample of surficial weathered shale from the Mahogany
ledge of the Green River formation assayed 12.8 gal-
lons of oil per ton, whereas a sample of unweathered
shale taken 2 feet behind the surface assayed 45.5 gal-
lons per ton (Guthrie, 1938, p. 99; similar data, Stan-
field and others, 1951, p. 20-22). Similarly, samples
of weathered Chattanooga shale taken from an old
road outcrop in eastern DeKalb County, Tenn., yielded
an average of 2.2 gallons of oil per ton of shale;
samples of shale representing the same stratigraphic
interval, taken from a core drilled a few hundred
feet away, yielded an average of 11.8 gallons of oil
per ton.

The changes in the uranium content of a shale due
to weathering are more complex. The oxidation and
addition of water involved in the weathering process
readily cause the decomposition of the abundant iron
sulfides in carbonaceous shales. These decomposing
sulfides produce oxidizing sulfuric-acid waters that
readily take much of the disseminated uranium into
solution. If these acid waters leach out and transport
the uranium away from the outcrop, the weathered
shale contains less uranium. But commonly the ura-
nium is retained and even concentrated in the hydrous
ferric and ferrous sulfate minerals precipitated on the
surface of the outcrop. Thus, deeply weathered out-
crop samples of Chattanooga shale may contain from
0.0020 to 0.0040 percent more or less uranium than
a “fresh” sample from the same unit,

In compiling the data used in this report it was
impossible to establish quantitatively the magnitude
of the weathering factor for each sample. In general,
the samples are considered to be unweathered shale,
and any “weathering factor” is ignored.

ANALYTICAL METHODS

Most of the chemical determinations used in the
preparation of this report are for uranium content
and oil yield (table 1). Where available, analyses for
other constituents, for example percent organic carbon
and P,0;, are also included in the table.

Each sample submitted to the laboratory was
crushed to a coarse-mesh size, and the sample was
split into two parts; one split was then further crushed
to —8 mesh for the determination of oil yield, and
the other split was crushed to —80 mesh for the ura-
nium determination. For the oil determination, ap-

proximately 125 grams are needed; for the uranium
determination, 1 gram is sufficient. Two “raw shale”
splits of each sample, about 3% pint of —-20 mesh and
a similar quantity of —80 mesh, were retained and
stored, for use in additional analysis, either in the
Survey’s laboratory in Washington, D. C. or in the
one in Denver, Colo.

Most of the determinations of oil yield were made
by the modified Fischer retort assay method (Stanfield
and Frost, 1949) ; the oil-yield determinations on the
Antrim shale and on the core samples of the Green
River formation were made by the photometric method
devised by Cuttitta (1953a). The reproducibility of
these determinations of oil yield is considered to fall
within ==0.5 gallons of oil per ton of shale; all deter-
minations of less than 5 gallons of oil per ton are esti-
mated figures.

All the uranium analyses were made using the fluor-
ometric method described by Grimaldi and Levine
(1954). Most of the determinations for uranium listed
in this paper were reported in percent by weight to
the fourth decimal place (for example, 0.0053 percent),
but the probable error is estimated as ==0.0005 percent.
The percent equivalent uranium was determined for
most samples, but, because of the low total radio-
activity in the sampled shales and the variable abun-
dance in most shales of the radioactive isotope of
potassium (K*) and because of the fact that radio-
active equilibrium is upset by changes due to weather-
ing, these data are not considered reliable for any
statistical treatment.

CHATTANOOGA SHALE AND CORRELATIVES IN THE
EASTERN AND CENTRAL UNITED STATES

The Chattanooga shale is a part of an extensive
unit of marine black shale of Late Devonian and Early
Mississippian age that extends with remarkably uni-
form lithology and thickness over hundreds of
thousands of square miles of the North American
continent. The New Albany, Ohio, Antrim, Dunkirk,
Mountain Glen, Woodford, and Lodgepole are some
of the names that refer to stratigraphic equivalents
or partial equivalents of the Chattanooga shale.

In the eastern and central United States the Chat-
tanooga shale and its stratigraphic equivalents are
estimated to have an average uranium content of
0.008 percent and an average oil yield of about 5
gallons per ton of shale. Its thickness generally
ranges from 0 to 100 feet and averages about 40 feet.
The amount of uranium and oil that can be extracted
from the Chattanooga shale in a small area of east-
central DeKalb County, Tenn., is discussed in more
detail on p. 3. '
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CHATTANOOGA SHALE IN THE SOUTHEASTERN
STATES

Though the Chattanooga shale is less uraniferous
than, for example, the alum shales of Sweden, it con-
tains more uranium per unit of thickness over a wider
area than other known shales in the United States.
The area where the uranium content is uniformly the
highest and mining conditions most favorable is in
the central part of the Eastern Highland Rim of the
Nashviile Basin, Tenn. (fig. 1); this shale of high
uranium content extends eastward for 75 miles beneath
the Eastern Highland Rim to the Sequatchie Valley.
The distribution of uranium and the mineralogy of
the shale were described by Brown (1956) and Bates
and Strahl (1957). The geology of the Chattanooga
shale in this area and parts of adjacent states was
described in detail by Hass (1956) and by Conant and
Swanson (written communication, 1959).

In general, the Chattanooga shale has 5 lithologic
units, the lower 2 composing the Dowelltown member
and the upper 8 the Gassaway member (fig. 3). These
5 units, from oldest to youngest, are: (1) a black shale
unit, commonly 5 to 8 feet thick, with a basal sandstone
1 or 2 inches thick; (2) a unit, about 8 feet thick, of
gray shale with some interbedded black shale; (3) a
black shale unit about 7 feet thick; (4) a unit charac-
terized by gray quartz siltstone interbedded with black
shale, generally 1 or 2 feet thick; and (5) a black shale
unit at the top, about 5 feet thick. Where the Chat-
tanooga shale decreases in thickmess, the decrease gen-
erally is by loss of successive units from the bottom,
so that where the shale is only a few feet thick, only
the top black shale unit of the Gassaway member is
represented. Lateral changes in thickness are gradual,
commonly only a few inches per mile, and areas of
hundreds of square miles exist where changes in thick-
ness and lithology are small.

Correlation of the uranium determinations of some
3,000 samples with the stratigraphic features of the
Chattanooga shale has established field criteria for
locating those parts of the shale that contain the most
uranium. Those units that have the most uranium
characteristically are the “blackest” and have the
most organic matter, contain the least calcium car-
bonate, and can logically be interpreted as having been
deposited at the slowest rate; abundance of pyrite,
excellent fissility, and paucity of thin quartz siltstone
layers are secondary criteria. Beds an inch or less
in thickness contain 0.010 percent uranium for dis-
tances of a mile or more; the upper unit of the Gassa-
way member of the Chattanooga shale, about 5 feet
thick, contains about 0.008 percent uranium over an

area of several tens of square miles; and, similarly,
the entire Gassaway member, about 15 feet thick, con-
tains about 0.006 percent uranium over hundreds of
square miles.

The fact that the Chattanooga shale yields oil when
subjected to pyrolysis has long been known; it was
the stratigraphic correlative of this shale in the Ohio
River Valley that was first commercially used to pro-
duce oil in 1837. Guthrie (1938) summarized the
potential recovery and chemistry of the oil from the
Upper Devonian and Lower Mississippian shales in
the eastern United States; some of the shales will yield
between 18 and 26 gallons of oil per ton.

When the exploitation of the uranium in the Chat-
tanooga shale in central Tennessee was considered, the
recoverable oil was anticipated to be an important
byproduct; consequently, about 325 of the thousands
of samples analyzed for uranium also were analyzed
for oil yield. By reason of the emphasis in studies
on the areas where the Chattanooga contains the most
uranium, most of these oil assays were made on
samples from the Eastern Highland Rim in Tennes-
see,

From the oil determinations reported previously in
the literature (Ashley, 1917; Crouse, 1925; Guthrie,
1938; Lamar, Armon, and Simon, 1956) and from those
of this report, the broad regional and vertical varia-
tions in oil yield of the Chattanooga shale and its
stratigraphic equivalents are difficult to interpret. In
general, parts of the shale probably would yield 10
or more gallons of oil per ton of shale over tens of
thousands of square miles in Tennessee, Kentucky,
Ohio, southern Illinois, and Indiana. Along most of
the Eastern Highland Rim in Tennessee, where more
numerous data are available, the 15-foot thick Gassa-
way member will yield between 5 and 12 gallons of
oil per ton, with some channel samples of parts of
this member yielding 15 to 17 gallons of oil per ton.

There is no question that, in general, as the oil
yield of the Chattanooga shale increases, the uranium
content also increases; the simple contrasting of per-
tinent data on a light-gray shale with that on a dense
black shale best illustrates this generalization. How-
ever, if all the oil and uranium determinations on
individual samples (table 1) of the entire formation
from Tennessee and Kentucky are plotted, a scatter
diagram with randomly distributed points is the re-
sult, and no relation between uranium and oil is indi-
cated. Only when the data are organized and plotted
for individual stratigraphic units within small geo-
graphic areas do they show the positive relationship
between o0il yield and uranium content.

The relation that exists between uranium content
and oil yield in the Chattanooga shale and the general
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OIL, IN GALLONS PER TON

F16use 3.—Relatlon of ofll yield to uranium content of the § stratigraphic units of the Chattanooga shale at 5 localities In DeKalb County

area, central Tennessce.

lithologic and stratigraphic factors that control them
are indicated in figure 3. As shown in this figure,
each of the five stratigraphic units in the Chattanooga
shale is distinguished by a different relation between
uranium content and oil yield; the figure further
shows that the relation for each stratigraphic unit
is fairly consistent from one locality to another. The
area of the 5 localities of figure 3 (fig. 4), in and near
DeKalb County in east-central Tennessee, was se-
lected because it had several closely spaced localities
for which reliable stratigraphic and analytical data
were available for each of the five stratigraphic units.
Figure 5 indicates the relation of oil yield to uranium
content for all the 18 samples from the upper unit

(Sce fig. 4.)

of the Gassaway member in this area and best illus-
trates the close relation between the two components
of the shale in a thin unit within a small area. Figure
6 shows the relation of oil yield to uranium content
for all the samples (41) of the entire Gassaway mem-
ber in this same area, but lumping of the data of
several stratigraphic units results in less well defined
relation.

In the field, the most obvious characteristic that can
be related to the amount of uranium and oil in the
Chattanooga shale, as indicated by analytical data, is
that of color, or “blackness,” which is a crude measure
of the amount of organic matter in the shale. Thus,
the upper unit of the Dowelltown member, which is
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Ficuores 4,—Map showing localities in DeKalb County area, Tennessee,
that are represented by sample data in figures 3, 8, 6, 7, and 8.

light gray, has the lowest uranium content and oil
yield. On closer observation of the rock, it is also
obvious that some parts of the formation have a
greater proportion of clastic minerals (for example,
thin layers of quartz siltstone) and consequently have
less organic matter. Thus, the middle unit of the
Gassaway member has a relatively low oil yield and
uranium content.

Physical differences among the three units of mas-
sive black shale (the lower unit of the Dowelltown
and the lower and upper units of the Gassaway) are

URANIUM IN CARBONACEOUS ROCKS
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Ficors 5.—Relation of ofl yleld to uranium content of 18 samples
representing upper unit of Gassaway member of Chattanooga shale
at 5 localities in DeKalb and White Counties, Tenn. Numbers indi-
cate localities from which samples were obtalned. (See fig, 4.)

not readily observed in the field. All 3 contain abun-
dant organic matter, generally about 20 percent. Only
on detailed study of cores and of thin sections are
small differences observed in proportion of organic
matter to clastic minerals, in degree of sorting, and
possibly in type of organic matter. If these lithologic
parameters were recorded for each sample, differences
in uranium content and recoverable oil between sam-
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Frooee 6.—Relation of uranium content to oll yield in 41 outcrop samples of Gassaway member of Chattanooga shale at 3 localitles,
DeKalb County area, Tennessee. (See fig. 4.)
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ples presumably could be explained more -clearly.

Bates and Strahl (1956, p. 1669) showed that the
uranium content of the (Gassaway member can be
directly correlated with the amount of carbon, but
that the correlation coefficient (0.69) is not exception-
ally high. Using their data (Bates and others, 1956,
p. 38-39), the relation between uranium and carbon
in the shale from 2 drill cores (YB—4 and YB-19)
taken in DeKalb County, Tenn. is shown in figure 7.
Again, a direct relation is suggested as it is when ura-
nium content and oil yield are compared (figs. 6, 7).
Neither carbon nor oil is the exact key, however, to
the amount of uranium in the shale.

The proportions of the two main types of organic
matter, the humic and the sapropelic, may be more
indicative of the oil yield and uranium content than
are total carbon and oil yield. The only data available
that can be presented to support this concept are from
a hand-picked sample composed of Faerstia sp., a
planktonic marine alga, which was separated from
the Huron member of the Ohio shale, a partial cor-
relative of the Chattanooga in Ohio; and from a
sample of a fragment of coalified driftwood of the
fossil land plant Cellizylon from the Chattanooga
shale in Tennessee (J. M. Schopf, written communi-
cation, 1953). Both are common identifiable con-

stituents in the Chattanooga shale and may be
considered representative of the sapropelic and humic
types of organic matter, respectively.

According to Schopf (written communication, 1953)
the Foerstia sample contained 0.0016 percent uranium
and yielded 26.5 gallons of oil per ton, the sample
having an ash content of 55.8 percent.

The Callizylon sample contained as much as 0.033
percent uranium (Breger and Schopf, 1955) and
yielded 18.3 gallons of oil per ton, but this material
had an ash content of only a few percent.

For the purpose of comparison, the oil yield of
these two end-member types of organic matter may
be computed on an ash-free basis; thus, the Foerstia
sample, a sapropelic type, would have an oil yield
of 59.9 gallons per ton, and the Callizylon sample, a
humic type, about 18.5 gallons per ton. These figures
are in general agreement with the oil yield of the
different types of organic matter (Francis, 1954, p.
400) that would be here considered sapropelic and
humic. Assuming that the uranium content is related
to the organic matter, and that both types of hypo-
thetically pure organic matter have 1 percent ash,
the Foerstia sample would have 0.0036 percent
uranium, and the Callizylon sample 0.033 percent.
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F1GuRD 7.—Relation of uranlum to earbon in 50 samples from 2 drill cores of Gassaway member of Chattanooga shale, DeKalb County,

Tenn.

(See fig. 4.) Analytical data on Geological Survey cores by Pennsylvania State University (Bates and othérs, 1956, p. 88-80).



12 - URANIUM IN CARBONACEOUS

Extrapolating from these postulations, one could
in turn attempt to estimate the general ratio of sapro-
pelic to humic material in the Chattanooga shale. For
example, general averages for the uranium content
and oil yield of the Chattanooga shale in Tennessee
may be considered 0.004 percent and 7 gallons per
ton, respectively. Assuming that the average content
of organic matter in the shale is 20 percent, then the
organic matter would be composed of about 50 percent
sapropelic matter and 50 percent humic matter.

Another example, though even more tenuous, of
how such data might be used is scen in attempting to
relate the uranium content (0.0060 percent) to the
oil yield (9.5 gallons per ton) of the Gassaway mem-
ber of the Chattanooga shale in the central part of
the Fastern Highland Rim of central Tennessee (fig.
6). Organic matter constitutes 20 percent of this
rock, and, hence, hypothetically the pure organic mat-
ter would contain 0.030 percent uranium and yield 47.5
gallons of oil per ton. By analogy to the data on
the Foerstia sample, about 60 percent of the organic
matter should be sapropelic to accord with the oil
yield of 47.5 gallons per ton; however, the uranium
content could not be explained even if all the organic
matter is humic, as indicated by the data on the
Callizylon sample. The discrepancy could be explained
by assigning a 0.07 percent uranium content to the
humic fraction; more likely, both the oil yield of the
sapropelic material and the uranium content of the
humic fraction have higher values than indicated by
the meager data on the samples of Foerstia and
Calliwylon material. Worthy of special note with re-
gard to the high oil yield of the Foerstia sample, how-
ever, is that White and Stadnichenko (1923) long
ago recognized this alga in Devonian black shales
as one of the main “mother plants” of the oil that
can be derived from these shales; the abundant spore
cases, with their similar “waxy-resinous” protective
coatings were also noted as source substances for the
extractable oil.

The specific gravity of the oil extracted from the
Chattanooga shale seems to increase as the uranium
content of the shale increases (fig. 8). The reasons
for this relation are not known, and in view of the
information presently available, any possible explana-
tion that might be put forward must be viewed as
very tentative.

If the uranium content of the Chattanooga shale
were controlled largely by the type of organic matter
in the shale and if the specific gravity of the oil
distilled from this shale were similarly controlled, a
positive relation between the uranium content of the
shale and specific gravity of the oil from the shale
would be expected.
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Ficura 8.—Relatlon of specific gravity of extracted oll to uranium
content, as determined on 46 samples of Chattanooga shale from 5
localitles, DeKalb County area, Tennesgee. (See fig. 4.)/

Determination of specific gravity of the oil ex-
tracted from a shale is part of the routine modified
Fischer assay method (Stanfield and Frost, 1949). In
this assay method, a 100-gram sample of ground
shale is heated from room temperature to 500° C in
40 minutes and maintained at this temperature for
an additional 20 minutes. If the shale is heated to
higher or lower temperatures, or for much longer or
shorter periods, the same shale will yield oils having
different specific gravities; but the fact that different
shale samples produce oils of different specific gravi-
ties under standard time and temperature conditions
may indicate fundamental differences in the type or
combination of types of organic matter among the
shale samples. These differences in the organic mat-
ter might be substantiated by microscopic observation,
solvent properties, ultimate coal analyses, infrared
spectrographic analyses, and many other ways, but
these observations and analyses are not available for
the described Chattanooga shale samples. Informa-
tion on other shales can be presented, however, to
illustrate the probable control that the type of organic
matter contained has on the specific gravity of the
oil produced from a shale.

W. C. Kommes and J. W. Smith (U.S. Bureau of
Mines, written communication, 1952) made oil and
organic-matter determinations on several suites of
samples of oil shales of foreign countries. From their
data, the approximate percentage of organic matter
converted to oil can be estimated. A graph of the
estimated data plotted against the specific gravities
of the respective oils (fig. 9) indicates that within a
suite of samples the greater the percentage of organic
matter converted to oil, the lighter the oil. In terms
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of the types of organic matter previously discussed,
where Lhe sapropelic type of organic matter has a
much greater oil yield than the humic type, in gen-
eral 4 or 5 times as much, the logical conclusion
would be that the greater the percentage of sapropelic
substance in the total organic matter, the lower the
specific gravity of the derived oil. Conversely, the
greater the percentage of humic substance in a shale,
the higher the specific gravity of the derived oil
will be.

Support for these conclusions is found by observing
the relation of the specific gravity of the oils extracted
from the shales to the hydrogen content of the organic
matter. Plotted data of 2 of the suites of samples
of figure 9, the shales from Brazil and South Africa,
show that as the hydrogen content of the organic
matter increases, the oil becomes lighter (fig. 10).
Figure 10 also shows a positive relation between hydro-
gen content of the organic matter and the amount
of that organic matter converted to oil.
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Figurg 10.—Diagrams indicating that the specific gravity of oll ex-
tracted from shale is related both to the hydrogen content of the
organlc matter and to the amount of organic matter converted to
oll; based on Fischer assays on samples of oil shales from Brazil
and South Africa. (Data from W. C. Kommes and J. W. Smith,
U.S. Bureau of Mineg, written communication, 1952.)

The data on shales from other countries are reviewed
here to show that changes in the specific gravity of
oils derived from a shale by the Fischer method are
probably a function of the variations in the propor-
tions of sapropelic to humic types of organic matter.
The suggested conclusion is that, for a group of sam-
ples from an oil shale, low specific gravity of oil,
high percentage of organic matter converted to oil,
and organic matter of high hydrogen content are indi-
cative of a preponderance of the sapropelic type of
organic matter in an oil shale; conversely, high spe-
cific gravity of oil, low percentage of organic matter
converted to oil, and organic matter of low hydrogen
content are indicative of a preponderance of the humic
type of organic matter. If this conclusion can be
proved, the observed relation between the uranium
content of the Chattanooga shale and the specific
gravity of the derived oil (fig. 8) can be used as addi-
tional proof of the theory that, other factors being
equal, the amount of uranium deposited in a shale
has a positive relation to the amount of humic organic
matter being deposited ab the same time,

The author does not wish to invade the complex
subject of the relation that exists between uranium



14

and liquid petroleums; but it is of interest that, in a
study of uranium in oils and asphalts in the United
States, K. G. Bell (written communication, 1958)
found that the heavier asphalt-base crude oils in gen-
eral contain several times as much uranium as do the
lighter paraffin-base oils, and they show a slight posi-
tive correlation between specific gravity and uranium
content. The uranium contents of the crude oils gen-
erally range from a fraction of one part per billion
to a few parts per billion.

No uranium analyses have been made on oils derived
from oil shales, to the author’s knowledge, but these
oils undoubtedly contain only a few parts per billion.
Breger, Meyrowitz, and Deul (1954) subjected samples
of Chattanooga shale, Callizylon from the Chatta-
nooga, subbituminous coal, and Swedish kolm to de-
structive distillation tests; they showed that most,
if not all, of the uranium in these rocks does not vola-
tilize with the resulting oil but remains with the
char residue.

In summary, a positive relation between uranium
content and oil yield in the Chattanooga shale would
suggest a constant proportion of humic to sapropelic
material in the shale. The positive relation between
uranium content and oil yield exists for thin units in
a small geographic area but becomes less distinct
where thicker units or larger areas are considered.
The apparent positive relation of uranium content to
the specific gravity of the oil derived from the shale
further supports the suggestion that the proportion
of humic to sapropelic matter controls the uranium
content of the shale and probably also controls the
amount and type of oil that can be distilled from
the shale.

ANTRIM SHALE IN MICHIGAN

Determinations of uranium content and oil yield
for 38 samples of the Antrim shale from 2 wells in
Michigan are given in table 1 and shown in figure 11.
The Antrim is a marine Devonian black shale that
is in part correlative with and lithologically similar
to the Chattanooga shale. The organic content of
parts of the Antrim is about 10 percent; its known
uranium content rarely exceeds 0.004 percent. As
indicated by available analyses, the oil yield ranges
from no measurable oil to 16.9 gallons per ton of shale,
with the best 10 feet of shale yielding 15.0 and 13.4
gallons of oil per ton of shale in the Pure Oil Co. and
the Cook Drilling Co. Bonardi wells, respectively.

The analytical data on samples from several feet
of section from 2 localities about 200 miles apart are
not intended to be representative of the large body
of Antrim shale that generally ranges from 100 to
650 feet in thickness. On the other hand, the simi-
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larity in the distribution of points in the scatter dia-
grams is readily observed. As is the case for some
other shales, a general positive relation of uranium
contents to oil yields is indicated, and the general in-
crease of uranium content with an increase of
recoverable oil is certainly suggested. The oil yield of
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the Antrim shale samples was determined by the photo-
metric method of Cuttitta (1953a), which unfortu-
nately does not include specific gravity determinations
on the oil; thus, any relation of the uranium content
of the shale to the specific gravity of the oil is not
known.

Beers (1945, p. 11) presented some carbon and ura-
nium determinations of the Antrim shale and two
overlying IPaleozoic shales in Michigan, and from
these data he concluded that there was high positive
correlation between these two components (fig. 12).
Becausa the amount of carbon in the Antrim is a crude
measure of the amount of oil that can be produced,
some positive correlation between the oil and the
uranium would be expected; the limited new data
presented here are believed to support this conclusion.

CHATTANOOGA AND WOODFORD SHALES IN THE
MIDCONTINENT AREA

Lucas (1958) briefly described the methods of dis-
tillation of the Woodford shale of Oklahoma, and, on
the basis of a few samples, reported that this shale
yields about 9.3 gallons of oil per ton. Landis (1958)
summarized the uranium contents of the Woodford
and the Chattanooga shales and their stratigraphic
correlatives in the central midcontinent area.

Too few analyses of the Chattanooga and Woodford
shales (approximate correlatives) of the midcontinent
area are available to appraise them as potential
sources of oil or to demonstrate conclusively any rela-
tionship of their oil yield to uranium content. Seven
channel samples, representing 30 feet of the Woodford
shale in Murray County, Okla., yielded as much as
15.3 gallons of oil per ton and 0.007 percent uranium;
the average was 11.5 gallons per ton and 0.005 percent
uranium. Data shown on figure 13 suggest that a
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shight positive relation exists between the uranium
content and the oil yield of these shale samples and
also between the uranium content of the shale and
the specific gravity of the oil; however, the data are
insufficient to draw any conclusions on their validity.
Eleven samples of the lower 11 feet of the Chattanooga
shale about 100 miles north in Cherokee County, Okla.,
all contained less than 2 gallons of oil per ton; the
uranium content ranged from 0.002 to 0.007 percent
and averaged 0,005 percent. The shale in the two
areas appears lithologically similar, but detailed
studies might reveal distinct differences in the amount
and type of organic material, which would explain
the differences in oil yield. In turn, the difference
in type of organic material could be related to paleo-
geographic position of the two areas, with respect to
source of the dominating types of plant matter contri-
buted to the Chattanooga sea.
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Samples were obtained from a core-of Woodford
shale equivalent from Sinclair Prairie Oil University
6 “154,” Andrews County, in western Texas, through
the courtesy of S. P. Ellison, Jr. (see Ellison, 1950,
p. 9). The analyses (table 1) that were made on
samples from 10 feet of this core indicate a uranium
content of 0.003 percent and an oil yield of about 84
gallons of oil per ton of shale. When the data on oil
and uranium in the nine samples are compared, no ob-
vious positive or negative relation can be shown to ex-
ist. The only analyses that are available for comparison
with the Woodford equivalent of western Texas are
those on a 5-foot channel sample of the black shale
of the Doublehorn shale member of the Houy forma-
tion (Cloud, Barnes, and Hass, 1957), a partial cor-
relative of the Woodford that is exposed in the T.lano
area, Burnet County, Tex. This sample, which rep-
resents the upper part of the 8-foot unit, contained
0.009 percent uranium and the Fischer assay was
21.8 gallons of oil per ton. Pertinent to the nearly
threefold difference of both Lhe oil yields and uranium
contents of these Upper Devonian and TLower Missis-
sippian(?) black shales in Texas are the readily ap-
parent differences between the shales of the two areas
as observed in thin sections. The shale from the Llano
area, which has the higher oil yield and uranium
content, is finely laminated and contains an estimated
40 percent organic matter by volume, with numerous
recognizable spore exines. The Woodford shale equiva-
lent of western Texas is poorly sorted, contains more
clastic mineral grains, and the organic matter, which
constitutes an estimated 25 to 30 percent by volume,
is macerated and contains very few recognizable spores.

The stratigraphically equivalent black shales of
Late Devonian and Early Mississippian age in south-
ern Illinois generally yield less than 5 gallons of oil
per ton (Lamar, Armon, and Simon, 1956, p. 5). The
uranium content of these shales is estimated to be
about 0.005 percent, based on the radioactivity data
presented by Ostrom and others (1955).

BLACK SHALES OF PENNSYLVANIAN AGE IN EASTERN
KANSAS AND NORTHEASTERN OKLAHOMA

Within the thick sequence of rocks of Pennsylvanian
age in the central midcontinent area are some 40
marine black shale units, most of which are only a
few feet thick, contain scattered phosphatic nodules,
and commonly overlie coal beds. In the course of the
Geological Survey’s reconnaissance investigations for
uraniferous black shales most of these shales were
checked for their radioactivity, (reviewed in Swanson,
1956, p. 454-455) and, more recently, the distribution
and genesis of uranium in black shales of Des Moines
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age have been investigated (Walter Danilchik and H. J.
Hyden, written communication, 1957).

Runnels and others (1952) reported the oil yields
of 59 samples from 20 of these black shale units in
Kansas as ranging from a trace to a maximum of 22.8
gallons per ton. The oil yields and uranium contents
of 16 additional samples are reported here. These
data suggest that the following units, which are black
shales 2 to 5 feet thick, may be expected to yield 5
to 10 gallons of oil per ton of shale over areas of
hundreds of square miles: Heebner shale member of
the Oread limestone; Kudora shale member of the
Stanton limestone; black shale in the Lenapah lime-
stone; black shale at the base of the Pawnes limestone;
black shale in the Fort Scott limestone. The average
uranium content of each of these units is estimated to
be about 0.005 percent.

The scattered phosphatic nodules in these shales,
which were described and analyzed by Runnels, Schlei-
cher, and Van Nortwick (1953), generally contain
0.01 to 0.09 percent uranium and undoubtedly are the
major uranium-bearing material in many of the shales.
In contrast to the uranium of some of the shales cited
in this report, most of the uranium of the Pennsyl-
vanian shales apparently is not related to the organic
matter, and the uranium content and oil yield are
independent of each other. These relations are indi-
cated by the analyses of seven samples (table 1) of
the uppermost black shale unit of the Cherokee shale
as shown in figure 14; Danilchik and Hyden (written
communication, 1957) concluded that most of the
uranium is in the carbonate-fluorapatite present in
these shales.

Burton and Sullivan (1951, p. 884) pointed out the
positive correlation between the radioactivity and
organic carbon in eight cores of the Cherokee shale
in Oklahoma; Whitehead (1952, p. 196) observed an
increase of radioactivity with increase in phosphorus
in the same cores. Whitehead further indicated (1952,
p. 198) by autoradiographic studies that about three
times more radioactive alpha particles originate in
the phosphatic material than in the organic matter.

There is no doubt that the three constituents, ura-
ninm, phosphate, and organic material, are genetically
interrelated in these Pennsylvanian shales. Inasmuch
as phosphorus, which is one of the major inherent
elements in plants and which is concentrated by many
animals, is an essential element in living organisms,
the phosphorus in the phosphate in these shales was
probably derived in large part from the decaying
organic matter, most likely plant matter. The phos-
phorus thus contributed precipitated out in combina-
tion with calcium and fluorine to form phosphate,
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which preferentially attached most of the available
uranium.

BLACK SHALES OF PENNSYLVANIAN AGE IN ILLINOIS

Marine black shales in the Pennsylvanian rocks in
Tllinois are similar in thickness, age, and cyclothemic
position to the shales in eastern Kansas and north-
eastern Oklahoma. The oil yield of 114 samples from
some 30 of these shale units ranged from 0 to 40
gallons per ton, but 88 percent of them contained less
than 15 gallons per ton (Lamar, Armon, and Simon,
1956, p. 1). The radioactivity of most of these same
samples is presented by Ostrom and others (1955).
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An attempt was made to determine if there is any
relation between the oil yield and radioactivity of 92
of the samples for which both oil and uranium deter-
minations are given in the two publications cited
above. No significant relation was determined, prob-
ably because of the inherent variability of the radio-
activity measurements (expressed as equivalent ura-
nium oxide), and the many variable factors involved
in the wide geologic and geographic distribution of
the outcrop samples.

Splits of 7 samples from the shale above the No.
2 coal, Carbondale group, and of 7 samples from the
shale below the Shoal Creek limestone, MclLeansboro
group, were obtained from the Illinois State Geological
Survey for additional chemical study (table 1). The
oil yield and uranium determinations are plotted in
figure 15. For the shale above the No. 2 coal, which
is 1 to 3 feet thick, the graph shows a slight sugges-
tion that oil yield increases with increasing uranium
content, but no relation is indicated by the data on
the shale below the Shoal Creek limestone, which is
also about 1 to 3 feet thick.

Inasmuch as some or all of the uranium may be
associated with the phosphate in these shales, as it
seems to be in some of the Pennsylvanian shales of
Kansas and Oklahoma, the uranium determinations
were compared with percent P05 determinations. The
amount of P,O; in the 14 samples of figure 15 ranged
from 0.3 to 4.0 percent and averaged 1.4 percent.
Again, no relation is apparent, nor is there when the
suns or different ratios of the oil and phosphate
analyses are compared with uranium content. The
author believes, however, that if analyses were avail-
able on numerous samples systematically selected from
a shale unit in a small area, a clear-cut relation could
be shown to exist among the three constituents, ura-
nium, phosphate, and organic matter. This conclu-
sion is almost opposite to that reached by Krumbein
and Slack (1956) in their statistical analysis of the
distribution of radioactivity in the Pennsylvanian
black shale overlying “Coal No. 6” in Illinois. In
this study, this black shale was interpreted statistically
as a “homogeneous sampling stratum” (p. 745) because
the radioactivity of their closely spaced channel sam-
ples varies greatly, but nonsystematically, in either
vertical or lateral directions. The present author be-
lieves that it is within this internal variation that
rather precise local and regional differences could be
determined. The greater part of the radioactivity
is caused by the uranium, which in these Pennsyl-
vanian black shales is related mainly to the phosphate
and, to a lesser extent, to the organic matter. It is
the changes in the distribution and amount of these
two components and the amount of uranium associated
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with each that would provide the basis for determin-
ing patterns of radioactivity differences that were
not made apparent in the study made by Krumbein
and Slack.

BLACK SHALES IN THE PHOSPHORIA FORMATION

Condit (1919) presented a general review of the
shale-oil potential of the Phosphoria formation in
western Montana, southeastern Idaho, and adjacent
parts of Wyoming and Utah. He reported that shales
in the lower part of the Phosphoria in the Dillon-Dell
area of southwestern Montana yield the most oil,
about 20 gallons per ton of shale, of any part of
the Phosphoria throughout these states. The shales,
which are also phosphatic, range from a few to 20
feet 1n thickness and are interbedded with phosphatic
units that contain as much as 30.5 percent P,Os.

Extensive studies by the Geological Survey have
shown that the uranium in the Phosphoria formation,
which ranges from 0.001 to 0.06 percent, is most
closely associated with the phosphate (reviewed in
McKelvey and Carswell, 1956) ; any future production
of uranium from this formation will be as a byproduct
in the well-established phosphate industry. Thomp-
son (1953, p. 62) found, however, that in samples
having a low equivalent-uranium content (average of
less than 0.010 percent) there is a direct relation
between uranium content and organic matter; most
of the beds that might be termed oil shales probably
fall into this group.

The only available analyses of samples of the black
shale in the Phosphoria formation considered appli-
cable to this discussion are on 48 samples from the
Retort phosphatic shale member (McKelvey and
others, 1956; unit D of Cressman, 1955) of the Phos-
phoria formation in Beaverhead County, southwestern
Montana (table 1). Of these 48 samples, which rep-
resent a total thickness of 58.2 feet, 21 contiguous
samples (Nos. 2040) of a part of the member
26.7 feet thick near the middle of the unit were chosen
for diagrammatic comparison of their uranium con-
tent, P,O;, and oil yield (fig. 16). The diagrams
suggest that the oil yield and uranium content bear
little or no relation to each other, and that the P,O,
and uranium contents have a generally positive rela-
tion. There seems to be an even closer correlation
when the uranium content is compared with the sum
of the percentage of oil yield and percentage of P,Os;
this correlation suggests that the phosphate and the
organic matter together account for most of the urani-
um in this shale.

Numerous other multiple analyses of samples of
phosphatic units in the Phosphoria formation that



OIL YIELD AND URANIUM CONTENT OF BLACK SHALES

A

0.0060

0050 v

.0020F—e

URANIUM, IN PERCENT
8
&
y

0010 d o g

.00
000 5 10 15 20 25 30 35

OIL, IN GALLONS PER TON

B

0.0060 ¥

0030 e .

.0020 [—= *

URANIUM, IN PERCENT

.0010 88

0 5, 10 15 20 25 30 35

B,0,. IN PERCENT

c

0.0060 L

.0050 . -

URANIUM, IN PERCENT
’
h
[ ]
]

0010 o——r—e

I

0 5 10 15 20 25 30 35
F,0, PLUS OIL, IN PERCENT

FIaURE 16.—Relation of uranium content to (A) oil yleld, (B) P,0,, and
(C) Pi0s, and ofl for 21 vertically contiguous samples (Nos. 20-40)
of the Retort phosphatic shale member of the Phosphoria formation,
Beaverhead County, southwestern Montana, (All data except uranjum
determinations from Swanson and others, 19563, p. 16-24.)

19

include determinations of oil yield (V. E. McKelvey,
written communication, 1957) are not reviewed here
or included in the table, as the determinations all
show less than 4 gallons of oil per ton and most less
than 1 gallon per ton.

BLACK SHALE IN THE SHARON SPRINGS MEMBER,
PIERRE SHALE

A part of the Sharon Springs member of the
Pierre shale in South Dakota, Nebraska, and Kansas
is hard black organic-rich shale that contains as much
as 0.010 percent uranium, but generally only about
0.003 percent (Tourtelot, 1956). The thickness of the
member generally ranges from 20 to 500 feet, but
typically only the lowest part of the unit containg
more than 0.001 percent uranium.

Too few determinations are available to estimate
the oil yield of the Sharon Springs member, but it
is doubtful that more than a few beds a few feet
thick would yield more than 5 gallons per ton of
shale. A sample from a bed about 8 feet thick in
Lyman County, S. Dak., yielded 8.1 gallons per ton,
the highest of the 3 analyses available, but the sample
contained only 0.002 percent uranium (R. C. Kepferle,
written communication, 1956; table 1). Runnels and
others (1952, p. 179) reported shale about 10 feet
thick in the Sharon Springs member of the Pierre
shale of Wallace County, Kans., would yield slightly
more than 6 gallons of oil per ton, but the uranium
content is not known.

OIL SHALES IN THE GREEN RIVER FORMATION IN
COLORADO, UTAH, AND WYOMING

The oil shales in the Green River formation extend
over a large area in northwestern Colorado, northeas-
tern Utah, and southwestern Wyoming. Of all the
oil shales in the United States, those in the Green
River have the greatest immediate potential for com-
mercial production of oil, and have thus received in-
tensive geologic and economic study by private com-
panies and government agencies.

The oil shales of the Green River formation are
not intended to be compared directly with the other
shales discussed in this paper, as they are markedly
different in overall composition and origin; but,
because they are economically important as a potential
source of oil and because their uranium content has
been investigated, they are pertinent to this discus-
sion. No attempt is made here to review the volumi-
nous literature on the geology and oil potential of
the Green River formation. The reader is referred
to general papers on its geology and origin (Bradley,
1931; Donnell, Cashion, and Brown, 1953; Picard,
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1955), the physical and chemical properties of its
oil shale (Stanfield and others, 1951), its oil resources
(Donnell, 1957), and the mining and processing of
the shale (U.S. Bureau of Mines, 1954).

In 1944, Russell, (p. 191) observed that of all the
sedimentary rocks tested, oil shales had the highest
average radioactivity; thus early in the post-World
War II search for sources of uranium, the radioac-
tivity of the oil shales in the Green River formation
was tested. This early reconnaissance work indicated
that the general positive correlation between uranium
and organic content observed in other shales did not
apply in the case of the oil shales of the Green River,
and subsequent investigations and analytical data sub-
stantiated this conclusion. The paucity of uranium
in these widespread rich oil shales, however, does lend
support to and serves to clarify several interpretations
and conclusions on the geologic controls involved in
the syngenetic concentration of uranium in other
shales.

The average uranium content of the oil shales in
the Mahogany ledge, Parachute Creek member, based
on 46 channel samples, each representing 1 to 5 feet
of section, from 3 localities in northwestern Colorado
and northeastern Utah (table 1), is about 0.0006 per-
cent, only very slightly higher than the average ura-
nium content for all shales. The range in uranium
content in this suite of samples is small, 0.0003 to
0.0013 percent. The oil yield ranged from 1.0 to 42.7
gallons per ton, and the 2 samples that yielded 1.0 and
42.7 gallons per ton both contained 0.0006 percent
uranium. Furthermore, the 8 samples that contained
0.0010 percent uranium yielded 5.3, 16.8, and 26.0 gal-
lons per ton; of the 9 samples that contained only
0.0003 percent uranium, the oil yield ranged from 9.7
to 30.5 gallons per ton. Thus, no relation appears to
exist between the uranium content and oil yield in
this suite of 46 samples; nor is any relationship ap-
parent when the oil yields and uranium contents of
samples from individual localities are compared. Com-
parison of the uranium content of the shale with the
specific gravities of the oil derived from the shale
also gives a random pattern. TUntil more detailed
studies prove otherwise, it is doubted that the small
amount of uranium in the oil shales of the Green
River formation is chemically or genetically associated
with the abundant organic matter in these shales.
More likely, it is contained in the resistates, in the
clay fraction, and in the volcanic ash that is distributed
through the Green River formation.

As cmphasized by Bradley (1931, p. 7) and as a
point of definite contrast to most of the shales dis-
cussed in this paper, the oil shales in the Green River
formation would be better described as marlstones
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rich in organic matter. The predominant minerals
in both rich and lean oil-shale beds of the formation
are calcite and dolomite, which constitute about 25
percent of most of them and over 50 percent of some.
Other important differences between the “oil shales”
of the Green River and other oil shales described are:
(a) The Green River formation was deposited in an
increasingly saline lake, as indicated by the biota, de-
tailed paleogeographic studies, and saline constituents
such as sodium sulfates, sodium bicarbonates, and
magnesium salts; thus, it is nonmarine. (b) The
major part of the organic matter in the “oil shales”
of the Green River appears to be of algal origin and
can thus be compared to the boghead coals, whereas
the organic matter in most of the other shales, though
not so well known, is probably a combination of vas-
cular-plants and marine plankton. (c¢) This dif-
ference in type of organic material is probably the
chief reason for the difference in type and amount
of distillable oil—the “o0il shales” of the Green River
formation have yielded as much as 100 gallons of
oil per ton of shale and the oil is a lighter paraffinic
type, but the oil yield of the marine oil shales rarely
exceeds 20 gallons of oil per ton and the oil is gen-
erally a heavy and aromatic type.

A complete evaluation of these differences for the
purpose of interpreting the reason why the rich “oil
shales” in the Green River formation have only a
small fraction of the uranium content of marine oil
shales will not be presented here. The most obvious
conclusion is either that the lake waters contained
little or no uranium or that the conditions conducive
to uranium precipitation or adsorption on or within
the organic matter never existed. The abundance of
carbonate minerals intimately mixed with the organic
matter indicates a carbonate environment with neutral
to slightly alkaline pH and slightly oxidizing condi-
tions wherein the nranium would be retained in solu-
tion, probably as uranyl carbonate complexions. The
sapropelic type of organic matter, mainly of algal
origin, does not assimilate uranium, nor does it lend
itself to the decomposition by anaerobic bacteria that
would result in the acid and reducing environment
in overlying waters that would be favorable for
uranium precipitation. The pyrite in these shales
probably formed under the reducing conditions created
within the sediment some distance below the sediment-
water interface where little or no reducible uranium
was present.

It should be mentioned that several thin beds in
the Laney shale tongue of the Green River formation
near Green River, Wyo. are abnormally radioactive
along an outcrop distance of more than 90 miles
(Love, 1955, p. 263). The most radioactive bed is a
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yellowish-gray silty claystone, one sample of which
contained 0.15 percent uranium; another bed, 8 inches
thick, is an olive-gray low-grade oil shale, which con-
tains as much as 0.014 percent uranium. J. D. Love
and Charles Milton (written communication, 1959)
reported that the uranium in these beds is related to
their P,O; content, which is as much as 20 percent.
Similar occurrences are known in southern Uintah
County, Utah. As suggested by the widespread and
uniform distribution of these uraniferous beds, the
uranium was very likely incorporated by the phos-
phate at the same time the sediments were deposited.

SHALES IN FOREIGN COUNTRIES

Little detailed information is available on the ura-
nium content of the many well-known oil shales in
other countries, such as the Dictyonema shales and
kukersite of Estonia and the U.S.S.R., the Cambrian
and Ordovician alum shales of Sweden, the Lower
Carboniferous shales of Scotland, the Permian tor-
banites of Australia, and many others. For descrip-
tions of many of these oil shales and the oil produced
from them the reader is referred to Cadman (1948),
Sell (1951), and Guthrie and Klosky (1951).

Splits of 8 samples of oil shale from the Glen
Davis mine in New South Wales, Australia, were
obtained from the U.S. Bureau of Mines; each con-
tained less than 0.0005 percent uranium but yielded
(U.S. Bur. Mines, written communication, 1952) 82.9,
119.7, and 135.9 gallons of oil per ton, respectively.
Similarly, 2 samples of oil shale from Breyton, Trans-
vaal, South Africa, which yielded 45.0 and 45.6 gal-
lons per ton each, contained less than 0.0005 percent
uranium. A large sample of shale from the Albert
formation of Early Mississippian age, collected by
K. G. Bell from a mine dump in Albert County, New
Brunswick, Canada, contained 0.0012 percent uranium
and yielded 48.6 gallons of oil per ton of shale. The
Dictyonema shale of Early Ordovician age in the
U.S.S.R. reportedly contains between about 0.005 and
0.025 percent uranium (Orlov and Xurbatov, 1934-
1936; Glebov, 1941), but its oil yield is low, generally
less than 10 gallons of oil per ton (Gibert, 1921).
Conversely, the Middle Ordovician beds of kukersite
in Estonia, which have been extensively mined for
many years for oil production, have an average yield
of about 60 gallons per ton (Winkler, 1930, p. 145-
148) but probably contain less than 0.0010 percent
uranium. The author ventures the guess that most
of the other commercially worked oil shales in the
world, particularly those yielding in excess of 25
gallons of oil per ton from shale having only 20 to
30 percent organic matter, also contain only a few

parts per million (0.000X percent) of uranium. The
Swedish shale, which has a relatively low oil yield,
is an exception.

Plants for extracting oil and uranium from the
Upper Cambrian alum shales have been in production
at Kvarntorp, Nirke region, Sweden for some years
(Guthrie and Klosky, 1951, p. 33; Magnuson, 1957,
p. 6). Dr. T. Bertil Dahlman (oral communication,
1957) of the Geological Survey of Sweden, stated that
a lower unit of the Peltura zone in the shale of the
Nirke region has an average yield of between 13 and
14 gallons of oil per ton and that the upper 15 feet
of this shale zone, which is mined for uranium, con-
tains about 0.028 percent uranium. In the Billingen
area of Vistergétland, an extensive layer of this
Upper Cambrian shale is about 10 feet thick and has
an average uranium content of 0.030 percent; this
same shale, however, will yield only a few gallons of
oil per ton, much of the oil originally in the shale
presumably lost by natural fractionation or low-tem-
perature pyrolization during the intrusion of an over-
lying diabase sill (Dahlman, oral communication,
1957; McKelvey, Everhart, and Garrels, 1955, p. 519-
520).

Figure 17 shows a crude relation between the oil
yield and uranium content of a part of the oil shale
in Nirke. Based on data obtained from Bates and
others, (1956, p. 89), figure 18 shows a more positive
relation of the uranium content to the carbon content
of the scattered lenses of kolm in the shale from Bil-
lingen, Vistergotland, Sweden. Oil yield data on
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Ficuen 18.—Relation of uranfum and carbon content in eight samples
of kolm from the Upper Cambrian shale near Billingen, Vister-

gotland, Sweden. (Data from Bates and others, 1956, p. §9.)

these kolm samples are lacking, so the relation of
oil yield to uranium is not known. The oil yield of
kolm is relatively small, according to Dr. Gosta Salo-
monson (oral communication, 1957) of the Swedish
Shale Oil Co. A sample of kolm collected by Dr.
Curt Teichert from the Upper Cambrian alum shale
at Stolan, in the Billingen area, contained 0.58 percent
uranium, yielded 1.1 percent or 2.9 gallons of oil per
ton of rock, and had an ash content of 16.55 percent
(U.S. Geological Survey sample 154140, Joseph Bu-
dinsky, analyst; oil determination by volumetric
method of Cuttitta, 1953b).

THEORETICAL ROLE OF ORGANIC MATTER IN OIL
YIELD AND URANIUM CONCENTRATION

The organic matter in the shale is the most impor-
tant factor to be considered in understanding the
oil yield and uranium content of any black shale.
All the relations brought forward in discussing shales
in this paper either directly or indirectly concern the
carbonaceous matter in these shales.

The oil that can be distilled from organic matter
can be related directly to the amount and type of
organic matter in the shale. The uranium present in
shales, however, is not for the most part an inherent
original constituent of the organic matter; rather it
is attached to the organic matter externally at some
stage in the decay and sedimentary cycle of the
organic matter. Thus, the amount and manner of
fixation of uranium in a black shale involves many
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more variables and is less understood than the origin
of the recoverable oil.

It is generally true that the more carbonaceous ma-
terial present in a shale, the greater will be the oil
yield; but a simple direct relation between the two
certainly does not hold for all shales. For example,
a Pennsylvanian black shale in the midcontinent area
and an oil shale from the Green River formation of
Colorado may both have 25 percent organic matter;
on distillation, the former yields only 7 gallons of
oil per ton, but the latter yields 40 gallons per ton.
The obvious conclusion is either that the oil yield is
dependent on the original type of organic matter or
that diagenetic processes drastically alter the organic
substance to increase the oil yield. Both probably
are of fundamental importance.

The oil yields of the wide variety of organic sub-
stances can be determined empirically, and thus the
components of plants and animals can be shown to
differ widely in the amount of oil they yield on
destructive distillation. The resin of a tree, for ex-
ample, yields over ten times the oil that the cellulose
does (Francis, 1954, p. 851, 400) ; and, ignoring alter-
ation for the moment, the shale whose organic matter
consists predominantly of resins yields a far greater
proportion of oil on destructive distillation than a
shale whose organic matter consists largely of
cellulose.

It is beyond the scope of this paper to list the oil
yield and to evaluate the possible geologic significance
of each of the many kinds of organic substances, as
to its relative abundance and resistance to weathering,
erosion, and diagenetic processes. Such a study would
be necessary to the basic understanding of the amount
of oil that can be extracted from a rock and the accu-
rate determination of what kerogen (p. 6) actually is.

For this discussion, the organic matter in shales
is simply divided into two main types—the sapropelic
type and the humic type (Twenhofel, 1950, p. 463;
Bell, 1954, p. 107). Each type has different paleo-
biologic, chemical, and geologic characteristics, and
the significance of each type in controlling the oil
yield and the uranium content of a black shale can
be better described and understood in light of these
differences.

The sapropelic type of organic matter in shales
was derived principally from algae, spores and pollen,
cuticles, and, probably to a lesser extent, from plant
resins and waxes and from the fatty tissues of ani-
mals. Only the first two are commonly recognized
in shales. Most of the humic type of organic matter
in shales was derived from the woody parts of plants,
composed mainly of cellulose and lignin. The sapro-

’
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pelic and humic types of organic material may be
distinguished on the basis of their hydrogen and
oxygen contents (White, 1926, fig. 44, table 34; Fran-
cis, 1954, p. 329). The sapropelic type generally con-
tains 10 percent or more hydrogen and 10 percent or
less oxygen on an ash-free basis, whereas the humic
type generally contains only a few percent hydrogen
but as much as 50 percent oxygen.

The hydrogen content of organic matter may be
considered as a crude index of oil yield, so that the
greater the amount of hydrogen in organic matter,
the greater the amount of recoverable oil (fig. 10;
Francis, 1954, p. 400; Kinney and Schwartz, 1957,
p- 1125). The sapropelic type of organic matter is,
in general, greatly resistant to chemical and bacterial
decay (White and Stadnichenko, 1923, p. 243) and
thus retains its originally high hydrogen content;
this more stable type of organic matter explains the
high yields of oil from a shale, but it probably has
little significance in the postulated processes control-
ling uranium concentration in shales.

The geologic significance of the two types of organic
matter in shales and the changes that the precursory
plant or animal substances have undergone under a
variety of natural conditions are, of course, complex
and therefore difficult to generalize. Though algae
are more prevalent in marine waters, they were and
are heavy contributors to the organic sediment in
lakes and swamps. Spore exines and pollen grains,
because they are easily transported by wind and as
a fine-grained sediment by water, also are widely
distributed ; but because they are derived mainly from
land plants, they would be expected to be more abun-
dant near land. The humic type is more commonly
confined to terrestrial or near-shore marine deposits.
Thus, in a marine shale, the amount of the humic
type of material would be expected to decrease with
increasing distance from an ancient shore line (Uspen-
skiy, 1938). The importance of this latter observation
on the distribution and subsequent alteration of hydro-
carbon-forming materials in modern and ancient sedi-
ments was emphasized by Strakhov and Rodionova
(1954).

The organic matter from which humic material is
derived is generally much less resistant to chemical
and bacterial decomposition than the plant substances
from which sapropelic material is derived (Francis,
1954, p. 144-147). Most of the plant substances which
are the progenitors of the humic type of organic
matter are immediately attacked and are completely
destroyed under most terrestrial conditions, and their
rate of decay is partly arrested only under rather
extreme natural conditions. Many of the plant or
animal substances that end as sapropelic matter can
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be exposed to aerobic conditions, transported, deposi-
ted, and preserved while the corresponding progeni-
tors of humic matter, which initially might have been
much more abundant, would be almost wholly de-
stroyed. The resulting concentration of the sapro-
pelic type of organic matter, if not too much diluted
by mineral sediment, produces a rich oil shale.

The sapropelic type of organic matter on the other
hand is believed to be almost inactive in the process
of syngenetically concentrating uranium; being re-
sistant to the natural forces of decomposition and
almost chemically inert, it does not ordinarily produce
the chemical environment or products of decomposi-
tion believed essential to uranium precipitation. This
fact may be the most important reason why some rich
oil shales contain less uranium than many other types
of rock and may also explain the lack of correlation
between oil yield and uranium content of some of
the shales discussed in this report.

The exact method or methods by which uranium is
incorporated with the organic matter in black shales
is unknown. By laboratory experiments, uranium
can be shown to be readily and irreversibly removed
from solution by organic substances (Tolmachev,
1943; Szalay, 1954; Moore, 1954; Manskaya, Droz-
dova, and Emelyanova, 1956) ; but whether the ura-
nium is held as adsorbed metal, as uranium-organic
complexes, as finely disseminated uraninite, or as all
three is not known. The general geochemistry of ura-
nium is. however, fairly well known (McKelvey, Ever-
hart, and Garrels, 1955, p. 466-472), and some very
probable means by which uranium may be concen-
trated by organic matter are suggested here: namely,
simple reduction and precipitation by hydrogen sulfide,
and assimilation (either adsorption or complexing).

The humic type of organic matter readily undergoes
a radical and complex chemical change on decay. It
is postulated that this change is the critical basis for
creating the chemical environment in which uranium
will be removed from natural waters. After deposition
of the humic type of organic matter in stagnant or
poorly circulated water, the period of oxidation and
attack by aerobic microbial action is very short; sub-
sequent decomposition in the resulting toxic waters
is accomplished at a much reduced rate by anaerobic
bacteria, which are dependent upon the bound oxygen
of the humic matter for survival. The overlying and
surrounding water becomes increasingly reducing and
acidic in character (Krumbein and Garrels, 1952, fig.
8) with the continued release of the decay products
CO., hydrogen sulfide, and methane.

The uranium that is soluble and transportable in
natural waters is in the hexavalent form, but on the
entry of these waters into the environment just de-
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scribed, the uranium is reduced to its relatively stable
tetravalent form and is probably precipitated directly
or sorbed onto the organic matter. A possible mech-
anism of this precipitation process, suggested speci-
fically for black shales by Strgm (1948) and by Gold-
schmidt (1954, p. 566-567), has been accomplished
experimentally (Gruner, 1952; Miller, 1958), where
tetravalent uranium oxide, or uraninite, can be pre-
cipitated from a uranyl solution by the introduction
of hydrogen sulfide gas into the solution; as is well
known, hydrogen sulfide is a common decompositional
product of humic matter under anaerobic conditions;
it is also formed by reduction of sulfate ions in sea
water by bacteria. Strgm (1948) reported as much
as 199.5 cubic centimeters of hydrogen sulfide per liter
in the stagnant bottom waters of fjords on the coast
of Norway, where black muds containing as much as
0.006 percent uranium are now accumulating.

The theory of slow but continuous precipitation of
ultramicroscopic uraninite in the presence of hydrogen
sulfide in the black mud environment seems very
plausible, but it remains to be verified by duplication
of this environment in the laboratory. Support for
this postulated genesis of uranium in the Chattanooga
shale is indicated by the findings of Deul (1955, 1957).
After physically separating the shale into several
fractions, he found that the fraction consisting of
the finest particles contained the most uranium. Tle
concluded (1955) that the uranium . . . exists largely
as a colloidal phase dispersed through the organic
matrix and that most of the uranium is not now
combined with the organic material or with the
minerals.” In 1957 (p. 218), on the basis of additional
experimental data, he stated that the uranium was
probably derived from the Chattanooga sea by redue-
tion of the uranyl ion to uranium dioxide.

The amount of uranium precipitated by hydrogen
sulfide would be controlled by the amount of uranium
in the water and the rate of overturn of this water
in the relatively stagnant environment. Sea water,
with which we are mainly concerned, has an average
uranium content of only 8.3 parts per billion, or
0.00000088 percent (Rona, Gilpatrick, and Jeffrey,
1957, p. 700), and there is little reason to believe an-
cient sea water contained appreciably more (Holland
and Kulp, 1954, p. 204; Koczy, Tomic, and Hecht,
1957). Obviously, with so dilute a source and with
the limited rate of overturn of water necessary to
maintain the environment for the precipitation of
uranium, the thorough dispersal of submicroscopic
uranium on and within the organic matter of a black
shale, and even on adjacent mineral particles, is more
understandable. The probable slow but continual rain
of detrital mineral particles and more organic sedi-
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ment further makes the likelihood of a large amount
of uranium being incorporated on or within any par-
ticular layer extremely small. It is for this latter
reason that the interpreted slow rate of deposition
is a key characteristic of uraniferous black shales.

It has also been shown experimentally that solid
organic matter such as peat and lignite, which are
predominantly humic in type, can extract large quan-
tities of uranium from pregnant solutions (Szalay,
1954; Moore, 1954). The Devonian woody plant
Callizylon, mentioned in connection with the Chat-
tanooga shale (p. 11), probably obtained its rela-
tively large percentage of uranium (0.083 percent)
in this manner, and this may have been an important
method of concentration of uranium in this shale.

Another and slightly more complex mechanism
whereby uranium is related specifically to the humie
type of organic matter involves the decay products
commonly termed humic acids (Vine, Swanson, and
Bell, 1958). These “acids,” which are released from
decaying organic matter of the humic type and trans-
ported in a colloidal state by slightly alkaline solutions,
are capable of adsorbing as much as 10 percent ura-
nium by weight (Szalay, 1954, p. 304). If the pH
of the aqueous medium is lowered, the humic acids,
with the adsorbed uranium, readily coagulate to a gel,
beginning at a pH of about 7.0 (Manskaya, Droz-
dova, and Emelyanova, 1956). It is conceivable that
humic acids may have been carried by streams from
land into black shale seas, or possibly were even
derived from decomposing matter of the humic type
on parts of the sea bottom. Adsorbing uranium en-
route, these organic colloids may have been coagulated
and deposited in the acidic waters where the organic-
rich muds accumulated. The high uranium content
(0.1 to 0.7 percent), the apparently low oil yield,
and an appearance similar to both natural and arti-
ficial humates suggest that the kolm in the Upper
Cambrian shales of Sweden originated as coagulated
humic acids. On the sea bottom, humic acids may
also form from and accumulate in the decomposing
humic matter, earlier described as creating the chem-
ical environment inducive to uranium precipitation
from sea water; thus in themselves they may adsorb
uranium without being transported. If these humic
acids, which on hardening appear in thin section as
structureless dark yellowish-brown to almost black
translucent matter, make up only 0.1 percent of a black
shale but contain 5 percent uranium, they could be the
explanation for all the uranium in a shale having 0.005
percent uranium.

As previously cited, Deul (1955, 1957) found that
of the several fractions of Chattanooga shale physi-
cally separated in the laboratory, the colloidal fraction
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contained the most uranium, as much as 0.08 percent.
It is possible, though apparently not considered by
Deul, that this colloidal fraction may have contained
several percent humic acids; either the solid humic
acids may have been pulverized to colloidal-size par-
ticles, or, as a result of slight oxidation during grind-
ing, the humic acids may have been made amenable
to resuspension by chemical means. .

The separation and analysis of humic acids from
the Chattanooga shale by chemical methods were
described by Kinney and Schwartz (1957) ; however,
the original uranium content of the acids is not known
because most of the uranium is chemically released
during treatment of the shale for separation of the
humic acids. :

No specific study has been made of the effect of
postdepositional or diagenetic processes on the present
oil yield and uranium content of carbonaceous shales,
but the results of other studies on these processes
may be applied here. Simple physical compaction,
which in muds, for example, may result in a volume
loss of as much as 90 percent by loss of porosity
(Hedberg, 1926, p. 1036), probably involves no real
gain or loss of these components. But the compaction,
once completed, does have a sealing effect; porosity
and permeability are reduced to the point where the
migration of any constituents is minimal, and the
organic matter, with its uranium and its oil-yielding
components, probably remains unchanged except under
later conditions of extreme metamorphism or exposure
to weathering.

In the earliest stages of diagenesis, before burial
to depths of more than a few tens of feet, some
chemical reorganization undoubtedly takes place—for
example, the intrasediment precipitation of iron sul-
fides and possibly phosphate from the upward-moving
interstitial solutions. But once the organic matter
is buried, its decay is slowed and almost terminated,
and subsequent changes, other than compaction, in
it and its associated uranium are believed negligible.
If at some later geologic time the shale is subjected
to forces other than simple gravitational compaction,
such as heat and pressures resulting from dynamic
metamorphism, natural distillation of the organic
matter, mainly of the sapropelic type, will result in
the formation and possible expulsion of gaseous and
liquid hydrocarbons. The oil yield of the rock will
be correspondingly diminished; but, as shown by
experiment by Breger, Meyrowitz, and Deul (1954)
and further documented by McKelvey, Everhart, and
Garrels (1955, p. 519-520), the uranium remains in
the residual part of the organic matter.

In summary, it is here concluded that the fraction
of the total organic matter in a shale genetically

-

responsible for most of the uranium is of the humic
type. Though this same fraction contributes a small
part, it is the sapropelic type of organic matter that
is the source of most of the oil extractable from a
shale,

It 1s obvious from the preceding discussion that a
quantitative evaluation of all the factors that combine
to result in a uraniferous oil shale would be extremely
difficult. It is apparent that a given shale having,
say, 20 percent organic matter throughout its extent
might yield rather widely different amounts of oil and
uranium from place to place; and, theoretically, at
least, the two derivatives could actually be shown to
have an inverse relation. Thus, other factors being
constant, only where the proportion of sapropelic to
humic type of organic matter remains constant would
the oil yield and uranium content be expected to have
a positive relation and be a simple function of the
increase or decrease of total organic matter.

Because few data are available to prove specifically
or to modify these theoretical relations, figures 19 and
20 are presented as illustrations of the possible control
that the 2 types of organic matter have on the variable
oil yield and uranium content of a black shale. Figure
19 is actually an extrapolation of the analytical data
on the samples of the alga Foerstia and the wood
fragments of Callizylon from the Chattancoga chale,
sapropelic and humic type of organic matter, respec-
tively (p. 11). The positive relation of the uranium
content to the specific gravity of the oil gives addi-
tional support to the theory that the type of organic
matter controls the uranium content and oil yield
of theshale. (See fig. 8; p.12-13.)

As shown in the diagram on the left in figure 19,
a marine black shale whose organic matter consists
predominantly of the sapropelic type, probably has
a very small amount of uranium, regardless of the
amount of total organic matter in the rock; if, on
the other hand, the humie type of organic matter pre-
dominates, relatively small increases in percent of
organic matter can reflect a large increase in the
uranium content of the rock. As shown in the dia-
gram on the right in figure 19, almost the reverse
situation is true where the sapropelic type of organic
matter is responsible for much larger oil yields than
a corresponding amount of the humic type of organic
matter. Because most marine black shales contain
mixtures of the two types of organic matter, it follows
that the amount of uranium and the oil yield of these
shales are related not only to the amount of organic
matter in the rock, but also to the proportion of the
sapropelic to the humic material making up that
organic matter. Examples a, b, ¢, and ¢” in figure 19
show these relations. If additional analytical data
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on isolated materials of the sapropelic and humic
types of organic matter were obtained, they un-
doubtedly would modify the lines shown in figure 19,
but the general pattern shown would probably hold
for the Chattanooga shale.

In any black shale, the percent of organic matter
and the proportion of sapropelic to humic type malk-
ing up that organic matter probably change in a
systematic manner in both a lateral and a vertical
direction. The reason for these changes can be visu-
alized by reconstructing the paleogeography of the
basin or area in which the black muds were deposited.
The amount of organic matter in the sediment at
any locality probably can be related to the paleogeo-
graphic distance of the deposited sediment from the
source area. Similarly, the ratio of sapropelic to
humic matter probably increases with increasing dis-
tance from land areas. These theoretical relationships
are illustrated in figure 20 and, inasmuch as they
are believed to be significant in controlling the ura-
nium content and oil yield of the resulting rock, several
positions (a, b, ¢y, ¢z, 03y 04, d, ¢, and f in fig. 20) in
the theoretical black mud layer are indicated to illus-
trate the changes in uranium content and oil yield
of the rock. The data on the shale at these several
positions are utilized in the diagrams in figure 21
to illustrate the circumstances under which a relation
between uranium content and oil yield is lacking
and those under which a positive relation would exist.

As shown, a positive relation exists if the proportion
of humic to sapropelic type of organic matter remains
constant, regardless of the total amount of organic
matter in the rock.

SUMMARY

No black shale in the United States is known to
have sufficient extractable quantities of both oil and
uranium to warrant its being considered as an im-
portant common source of both these commodities in
the near future. The shales in the Green River forma-
tion of northwestern Colorado and adjacent parts of
Utah and Wyoming, which yield in excess of 25 gal-
lons of oil per ton, will undoubtedly be commercially
processed for their oil in the near future, but their
uranium content is negligible, generally less than
0.001 percent. Parts of the Chattanooga shale of the
southeastern United States will yield about 10 gallons
of oil per ton and contain about 0.006 percent ura-
nium; the large tonnages of this shale warrant its
being considered as a low-grade source of both com-
modities.

In attempting to understand the oil yield and ura-
nium contenl of black shales, the following points
should be considered :

1. The organic matter in black shales accounts for all the
oll yleld and for most of the uranium content. In some shales,
a clear-cut positive relation can be shown between oil yield

and uranium content, but in others such a relation is lack-
ing or is even inverse.
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Ficure 21.—Graphs showling relation of uranium content to oil yleld in the theoretical black shale unit illustrated in figure 20,

2. Oil is derived directly from organic matter, whereas
most of the uranium is not in the original organic matter but
is later attached to or precipitated in the presence of organic
matter.

3. Two main types of organic matter in black shales, the
sapropelic and the humie, should be distinguished. The sapro-
pelic type is derived from algae, spores, pollen, resins, cuticles,
and analogous plant and animal remains, The humic type
is derived from cellulose, lignin, and analogous woody parts
of plants. DBoth types are present in varying proportions in
most black shales.

4. The sapropelic type of organic matter yields 4 to 5 times
more o0il than does the humic type, whereas the humic type
containg far more uranium than does the sapropelic type.

5. Some data indicate that as the uranium content of a
black shale increases, the specific gravity of the oil derived
from the shale by the Fischer method also increases. A tenta-
tive explanation of this linear relation is that both reflect an
increase in the proportion of humic to sapropelic matter in
the shale. This increase in the relative amount of humic mat-
ter also may be indicated by a decrease in the hydrogen
content of the organic substances and a decrease in the per-
centage of organic matter converted to oil.

6. It is postulated that the uranium in shales is concen-
trated from sea water within, on, or near the humic type of
organic matter by one or all of the following ways: direct
precipitation (by simple reduction of the hexavalent to the
tetravalent form) of uranium, probably by hydrogen sulfide;
removal of uranium ions from solution by adsorption and
complexing on solid humic materials; and adsorption or com-
plexing of uranium by humic acids while in solution. The
uranium in those black shales having an abundance of phos-
phatic materials generally is associated with the phosphate
rather than with the organic matter; this uranium probably
has substituted for caleilum in the carbonate-fluorapatite
structure.

7. Other factors being constant, only where the proportion
of sapropelic to humic type of organic matter in a shale re-
mains constant will the oil yield and uranium content have
a high positive correlation. Because the humic type of organic
matter is largely derived from land plants, this proportion
would logically change with paleogeographic position, and the
ratio of sapropelic to humic matter would increase with in-
creasing distance from shore.
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